Monotonicity and inequalities involving the incomplete gamma function
نویسندگان
چکیده
منابع مشابه
Monotonicity of Ratios Involving Incomplete Gamma Functions with Actuarial Applications
Ratios involving incomplete gamma functions and their monotonicity properties play important roles in financial risk analysis. We derive desired monotonicity properties either using Pinelis’ Calculus Rules or applying probabilistic techniques. As a consequence, we obtain several inequalities involving conditional expectations that have been of interest in actuarial science.
متن کاملSupplements to Known Monotonicity Results and Inequalities for the Gamma and Incomplete Gamma Functions
In particular they proved that for x > 0 and α = 0 the function [Γ(1 + 1/x)]x decreases with x, while when α=1 the function x[Γ(1+1/x)]x increases.Moreover they also showed that the values α= 0 and α= 1, in the properties mentioned above, cannot be improved if x ∈ (0,+∞). In this paper we continue the investigation on the monotonicity properties for the gamma function proving, in Section 2, the...
متن کاملOn some inequalities for the incomplete gamma function
Let p 6= 1 be a positive real number. We determine all real numbers α = α(p) and β = β(p) such that the inequalities [1− e−βx p ] < 1 Γ(1 + 1/p) ∫ x 0 e−t p dt < [1− e−αx p ] are valid for all x > 0. And, we determine all real numbers a and b such that − log(1− e−ax) ≤ ∫ ∞ x e−t t dt ≤ − log(1− e−bx)
متن کاملMonotonicity and Convexity for the Gamma Function
Let a and b be given real numbers with 0 ≤ a < b < a + 1. Then the function θa,b(x) = [Γ(x + b)/Γ(x + a)]1/(b−a) − x is strictly convex and decreasing on (−a,∞) with θa,b(∞) = a+b−1 2 and θa,b(−a) = a, where Γ denotes the Euler’s gamma function.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Inequalities
سال: 2019
ISSN: 1846-579X
DOI: 10.7153/jmi-2019-13-25